# Skull and Shackles Stat Rolls

### Play-by-Post Discussion

 1 person marked this as a favorite.

****This is just a placeholder to keep the stats for my group.****

Please use this thread to roll your stats. 3d6, calculate total bonus. Less than +5, roll again completely in a new post. Please and thank you.

Manly Demi-god of Lethargy Lazy Gamer 33

Attempt #1

1)3d6 ⇒ (4, 5, 2) = 11
2)3d6 ⇒ (3, 4, 2) = 9
3)3d6 ⇒ (6, 4, 2) = 12
4)3d6 ⇒ (6, 5, 4) = 15
5)3d6 ⇒ (6, 6, 6) = 18
6)3d6 ⇒ (2, 5, 5) = 12

Manly Demi-god of Lethargy Lazy Gamer 33

Looks like I'm "stuck" with a +8 total.

Stats

1.3d6 ⇒ (2, 1, 3) = 6
2.3d6 ⇒ (3, 1, 1) = 5
3.3d6 ⇒ (6, 6, 5) = 17
4.3d6 ⇒ (5, 4, 2) = 11
5.3d6 ⇒ (6, 6, 4) = 16
6.3d6 ⇒ (5, 1, 3) = 9

Stats (Reroll based on my +2)

3d6 ⇒ (6, 1, 6) = 13
3d6 ⇒ (2, 3, 4) = 9
3d6 ⇒ (3, 5, 2) = 10
3d6 ⇒ (1, 1, 6) = 8
3d6 ⇒ (5, 2, 2) = 9
3d6 ⇒ (3, 2, 3) = 8

Stats (Reroll based on my +1 the second time)

3d6 ⇒ (3, 2, 1) = 6
3d6 ⇒ (4, 1, 4) = 9
3d6 ⇒ (2, 5, 5) = 12
3d6 ⇒ (4, 1, 2) = 7
3d6 ⇒ (3, 5, 5) = 13
3d6 ⇒ (5, 3, 1) = 9

Should I just keep going until I hit +5?

Stats

13d6 ⇒ (2, 5, 6) = 13
23d6 ⇒ (2, 6, 5) = 13
33d6 ⇒ (6, 2, 6) = 14
43d6 ⇒ (5, 6, 5) = 16
53d6 ⇒ (4, 1, 3) = 8
63d6 ⇒ (4, 3, 6) = 13

Probability of Survival % : 1d100 ⇒ 23

what a poor spread of stats

Stew playing a bard. Chance of Survival % 1d100 ⇒ 10

Stats (Yet another reroll)

3d6 ⇒ (3, 6, 1) = 10
3d6 ⇒ (5, 6, 6) = 17
3d6 ⇒ (5, 3, 4) = 12
3d6 ⇒ (6, 4, 2) = 12
3d6 ⇒ (2, 4, 4) = 10
3d6 ⇒ (3, 6, 2) = 11

Woot, finally, I'll take it, a plus 5.

3d6 ⇒ (5, 6, 1) = 12 * 10 starting gold

1.3d6 ⇒ (3, 6, 5) = 14
2.3d6 ⇒ (4, 4, 6) = 14
3.3d6 ⇒ (6, 5, 5) = 16
4.3d6 ⇒ (3, 6, 6) = 15
5.3d6 ⇒ (2, 2, 3) = 7
6.3d6 ⇒ (1, 3, 2) = 6

chance of survival 1d100 ⇒ 32

so I cant find the stat roller?

BigDP wrote:
so I cant find the stat roller?

on the bottom of the page there is a button to press for formating rules open it and it will tell you the command to roll dice.

1) 3d6 ⇒ (2, 5, 6) = 13

2) 3d6 ⇒ (6, 6, 6) = 18

3) 3d6 ⇒ (2, 5, 6) = 13

4) 3d6 ⇒ (5, 5, 4) = 14

5) 3d6 ⇒ (1, 5, 6) = 12

6) 3d6 ⇒ (5, 2, 2) = 9

Chance of Survival: 1d100 ⇒ 85